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Definitions 

• A graph is said to be a bipartite graph if it possible to split the 
nodes into 2 disjoint sets, A and B, such that nodes in set A only 
have edges leading to nodes in set B 

• A bipartite matching is a bipartite graph such that no 2 edges 
have a common endpoint 

• The maximum bipartite matching of a bipartite graph is the 
bipartite matching with the most edges 



Example: Bipartite Graph 
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Example: Bipartite Matching 
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Example: NOT Bipartite Matching 
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Example: Maximum Bipartite Matching 
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Things to note 

• If there are m nodes in set A and n nodes in set B, then the 
number of edges in the Maximum Bipartite Matching has an 
upper bound of min(m, n) 

• There can be multiple maximum bipartite matchings 



How is this useful? 

• Sample problem: 

n people are applying for m jobs. Each person can only do 1 job 
and each job can only be done by 1 person. Given a list of jobs 
that each person is applying for, find the highest number of jobs 
that can be filled. 



Sample of sample 

Person Job being applied for 

Alice Accounting 

Baking 

Bob Baking 

Claire Baking 

Diving 

Dave Baking 

Carpentry 

Diving 



Alternate form of sample of sample 

Person Job 

Alice 

Bob 

Claire 

Dave 

Accounting 

Baking 

Carpentry 

Diving 



Maximum Bipartite Matching of alternate form of sample of sample 

Person Job 
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Solution to sample 

• Alice does Accounting 

• Bob does  Baking 

• Claire does Diving 

• Dave does Carpentry 



Network Flow 

• The problem of finding a Maximum Bipartite Matching is a 
special case of the Network Flow problem 

• A flow network is a weighted directed graph where each edge 
has a maximum capacity. Flow is sent from a source to a sink. 
The total flow into a node must be the same as the total flow out 
except for the source and the sink. The task is to maximise the 
flow that ends at the sink 

• This problem can be solved with the Edmonds-Karp extension 
of the Ford-Fulkerson algorithm 



Edmonds-Karp 

• Find the path with shortest length from the source to the sink 
where none of the edges on the path are full (augmenting path) 

• Pass as much flow as possible through that path 

• Repeat until there are no more paths from the source to the sink 



Code: Initialisation and input 



Code: BFS looking for path  



Code: Finding shortest path and flow  



Code: Reducing capacity of path edges   



Analysis 

• This algorithm runs in O(VE2) time 

• Dinic’s Algorithm can be used to improve this to O(V2E) when the 
graph is very dense 



Back to Maximum Bipartite Matching 

• To turn the Maximum Bipartite Matching into a Network Flow 
problem we add a source that is connected to all of the nodes in 
set A and a sink that is connected to all of the nodes in set B 

• All edges are given a weight of 1 

• From here, the problem of finding the Maximum Bipartite 
Matching is clearly the same as finding the maximum Network 
Flow 

• Since Maximum Bipartite Matching is such a special case of 
Network Flow, there does exist an algorithm than runs in O(VE) 



Algorithm 

• Store the graph as an unweighted directed graph 

• Construct a sink and source as before 

• Use a BFS or DFS to find a path from the source to the sink 

• Reverse the direction of each edge on the path 

• Repeat the process of finding a path and reversing until no 
more paths exist 

• The Maximum Bipartite Matching is the collection of all edges 
that are reversed 



Code: Input and initialisation 



Code: BFS 



Code: Path Reversal 



Code: Output 



Analysis 

• The BFS runs in O(E) time 

• The BFS will run at most V times since the number of edges going to 
the sink is at most V and decreases by 1 every iteration 

• Therefore this algorithm runs in O(VE) 


