
Maximum Bipartite
Matching

Ralph McDougall

3 February 2018

Comeback tour: 9 March 2019

Definitions

• A graph is said to be a bipartite graph if it possible to split the
nodes into 2 disjoint sets, A and B, such that nodes in set A only
have edges leading to nodes in set B

• A bipartite matching is a bipartite graph such that no 2 edges
have a common endpoint

• The maximum bipartite matching of a bipartite graph is the
bipartite matching with the most edges

Example: Bipartite Graph

1

A B

2

3

4

5

6

7

8

9

Example: Bipartite Matching

1

A B

2

3

4

5

6

7

8

9

Example: NOT Bipartite Matching

1

A B

2

3

4

5

6

7

8

9

Example: Maximum Bipartite Matching

1

A B

2

3

4

5

6

7

8

9

Things to note

• If there are m nodes in set A and n nodes in set B, then the
number of edges in the Maximum Bipartite Matching has an
upper bound of min(m, n)

• There can be multiple maximum bipartite matchings

How is this useful?

• Sample problem:

n people are applying for m jobs. Each person can only do 1 job
and each job can only be done by 1 person. Given a list of jobs
that each person is applying for, find the highest number of jobs
that can be filled.

Sample of sample

Person Job being applied for

Alice Accounting

Baking

Bob Baking

Claire Baking

Diving

Dave Baking

Carpentry

Diving

Alternate form of sample of sample

Person Job

Alice

Bob

Claire

Dave

Accounting

Baking

Carpentry

Diving

Maximum Bipartite Matching of alternate form of sample of sample

Person Job

Alice

Bob

Claire

Dave

Accounting

Baking

Carpentry

Diving

Solution to sample

• Alice does Accounting

• Bob does Baking

• Claire does Diving

• Dave does Carpentry

Network Flow

• The problem of finding a Maximum Bipartite Matching is a
special case of the Network Flow problem

• A flow network is a weighted directed graph where each edge
has a maximum capacity. Flow is sent from a source to a sink.
The total flow into a node must be the same as the total flow out
except for the source and the sink. The task is to maximise the
flow that ends at the sink

• This problem can be solved with the Edmonds-Karp extension
of the Ford-Fulkerson algorithm

Edmonds-Karp

• Find the path with shortest length from the source to the sink
where none of the edges on the path are full (augmenting path)

• Pass as much flow as possible through that path

• Repeat until there are no more paths from the source to the sink

Code: Initialisation and input

Code: BFS looking for path

Code: Finding shortest path and flow

Code: Reducing capacity of path edges

Analysis

• This algorithm runs in O(VE2) time

• Dinic’s Algorithm can be used to improve this to O(V2E) when the
graph is very dense

Back to Maximum Bipartite Matching

• To turn the Maximum Bipartite Matching into a Network Flow
problem we add a source that is connected to all of the nodes in
set A and a sink that is connected to all of the nodes in set B

• All edges are given a weight of 1

• From here, the problem of finding the Maximum Bipartite
Matching is clearly the same as finding the maximum Network
Flow

• Since Maximum Bipartite Matching is such a special case of
Network Flow, there does exist an algorithm than runs in O(VE)

Algorithm

• Store the graph as an unweighted directed graph

• Construct a sink and source as before

• Use a BFS or DFS to find a path from the source to the sink

• Reverse the direction of each edge on the path

• Repeat the process of finding a path and reversing until no
more paths exist

• The Maximum Bipartite Matching is the collection of all edges
that are reversed

Code: Input and initialisation

Code: BFS

Code: Path Reversal

Code: Output

Analysis

• The BFS runs in O(E) time

• The BFS will run at most V times since the number of edges going to
the sink is at most V and decreases by 1 every iteration

• Therefore this algorithm runs in O(VE)

